-8x^2-7x^2=-8+6x^2

Simple and best practice solution for -8x^2-7x^2=-8+6x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8x^2-7x^2=-8+6x^2 equation:



-8x^2-7x^2=-8+6x^2
We move all terms to the left:
-8x^2-7x^2-(-8+6x^2)=0
We add all the numbers together, and all the variables
-15x^2-(-8+6x^2)=0
We get rid of parentheses
-15x^2-6x^2+8=0
We add all the numbers together, and all the variables
-21x^2+8=0
a = -21; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-21)·8
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*-21}=\frac{0-4\sqrt{42}}{-42} =-\frac{4\sqrt{42}}{-42} =-\frac{2\sqrt{42}}{-21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*-21}=\frac{0+4\sqrt{42}}{-42} =\frac{4\sqrt{42}}{-42} =\frac{2\sqrt{42}}{-21} $

See similar equations:

| 1-4a+4=5 | | -6=r-3-3 | | 6/9-1/8=y | | -10=5n-4+2n | | +1)-5x=8+2(x-1) | | 2x+3=-4x+11 | | 3+x+12=20 | | x+3+12=20 | | 2-1=-3x+4 | | (7-4n)•6= | | (0,125)^11-2x=8 | | 30=5(e/5-3) | | -11=t*6-12 | | 1.5x+x+x=260 | | 9=8y-7 | | F(X)=-11x^2-5x+13 | | -5(6-r)=15-30-5r=15-5r=45r=-9 | | 4/9y-8=-4y= | | (1/9)^x=27^(2x+4) | | (1/9)^x=27^2x+4 | | 5-19y+19y=5 | | .8(p−5)=64 | | 1.2s=1-s | | x^2+x-57=0 | | y^2-3y-45=0 | | 2x-8=11=x+10 | | 60x-6-36x=189x+108 | | 8x/5=25 | | 17a=12 | | 1-7(7-4x)=9 | | 2^x=8^{4x-1} | | −9/8x=3 |

Equations solver categories